* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3} - Obligation: innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs a__b#() -> c_1() a__b#() -> c_2() a__f#(X1,X2,X3) -> c_3() a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) Weak DPs and mark the set of starting terms. * Step 2: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__b#() -> c_1() a__b#() -> c_2() a__f#(X1,X2,X3) -> c_3() a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Strict TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(a__f) = {2}, uargs(a__f#) = {2}, uargs(c_4) = {1}, uargs(c_6) = {1}, uargs(c_7) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [3] p(a__b) = [8] p(a__f) = [3] x1 + [1] x2 + [4] x3 + [2] p(b) = [0] p(f) = [1] x1 + [1] x2 + [1] x3 + [1] p(mark) = [4] x1 + [10] p(a__b#) = [1] p(a__f#) = [1] x2 + [4] x3 + [2] p(mark#) = [4] x1 + [4] p(c_1) = [1] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [8] p(c_5) = [1] p(c_6) = [1] x1 + [1] p(c_7) = [1] x1 + [4] Following rules are strictly oriented: a__f#(X1,X2,X3) = [1] X2 + [4] X3 + [2] > [0] = c_3() mark#(a()) = [16] > [1] = c_5() mark#(b()) = [4] > [2] = c_6(a__b#()) a__b() = [8] > [3] = a() a__b() = [8] > [0] = b() a__f(X1,X2,X3) = [3] X1 + [1] X2 + [4] X3 + [2] > [1] X1 + [1] X2 + [1] X3 + [1] = f(X1,X2,X3) a__f(a(),X,X) = [5] X + [11] > [3] X + [10] = a__f(X,a__b(),b()) mark(a()) = [22] > [3] = a() mark(b()) = [10] > [8] = a__b() mark(f(X1,X2,X3)) = [4] X1 + [4] X2 + [4] X3 + [14] > [3] X1 + [4] X2 + [4] X3 + [12] = a__f(X1,mark(X2),X3) Following rules are (at-least) weakly oriented: a__b#() = [1] >= [1] = c_1() a__b#() = [1] >= [1] = c_2() a__f#(a(),X,X) = [5] X + [2] >= [18] = c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) = [4] X1 + [4] X2 + [4] X3 + [8] >= [4] X2 + [4] X3 + [16] = c_7(a__f#(X1,mark(X2),X3)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__b#() -> c_1() a__b#() -> c_2() a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak DPs: a__f#(X1,X2,X3) -> c_3() mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:a__b#() -> c_1() 2:S:a__b#() -> c_2() 3:S:a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) -->_1 a__f#(X1,X2,X3) -> c_3():5 -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 4:S:mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) -->_1 a__f#(X1,X2,X3) -> c_3():5 -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 5:W:a__f#(X1,X2,X3) -> c_3() 6:W:mark#(a()) -> c_5() 7:W:mark#(b()) -> c_6(a__b#()) -->_1 a__b#() -> c_2():2 -->_1 a__b#() -> c_1():1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: mark#(a()) -> c_5() 5: a__f#(X1,X2,X3) -> c_3() * Step 4: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__b#() -> c_1() a__b#() -> c_2() a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak DPs: mark#(b()) -> c_6(a__b#()) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:a__b#() -> c_1() 2:S:a__b#() -> c_2() 3:S:a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 4:S:mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 7:W:mark#(b()) -> c_6(a__b#()) -->_1 a__b#() -> c_2():2 -->_1 a__b#() -> c_1():1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(7,mark#(b()) -> c_6(a__b#()))] * Step 5: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__b#() -> c_1() a__b#() -> c_2() a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:a__b#() -> c_1() 2:S:a__b#() -> c_2() 3:S:a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 4:S:mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(1,a__b#() -> c_1()),(2,a__b#() -> c_2())] * Step 6: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) - Weak DPs: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} Problem (S) - Strict DPs: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} ** Step 6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) - Weak DPs: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) Consider the set of all dependency pairs 3: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) 4: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {3,4} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** Step 6.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) - Weak DPs: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_7) = {1} Following symbols are considered usable: {a__b#,a__f#,mark#} TcT has computed the following interpretation: p(a) = [2] p(a__b) = [0] p(a__f) = [5] x1 + [2] x2 + [6] p(b) = [0] p(f) = [1] x1 + [1] x3 + [0] p(mark) = [5] x1 + [9] p(a__b#) = [1] p(a__f#) = [2] x1 + [8] x3 + [0] p(mark#) = [8] x1 + [1] p(c_1) = [0] p(c_2) = [2] p(c_3) = [4] p(c_4) = [2] x1 + [0] p(c_5) = [1] p(c_6) = [1] x1 + [1] p(c_7) = [1] x1 + [0] Following rules are strictly oriented: a__f#(a(),X,X) = [8] X + [4] > [4] X + [0] = c_4(a__f#(X,a__b(),b())) Following rules are (at-least) weakly oriented: mark#(f(X1,X2,X3)) = [8] X1 + [8] X3 + [1] >= [2] X1 + [8] X3 + [0] = c_7(a__f#(X1,mark(X2),X3)) *** Step 6.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):1 2:W:mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) 1: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) *** Step 6.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 6.b:1: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) 2: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) ** Step 6.b:2: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):1 2:W:mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) -->_1 a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: mark#(f(X1,X2,X3)) -> c_7(a__f#(X1,mark(X2),X3)) 1: a__f#(a(),X,X) -> c_4(a__f#(X,a__b(),b())) ** Step 6.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a__b() -> a() a__b() -> b() a__f(X1,X2,X3) -> f(X1,X2,X3) a__f(a(),X,X) -> a__f(X,a__b(),b()) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) - Signature: {a__b/0,a__f/3,mark/1,a__b#/0,a__f#/3,mark#/1} / {a/0,b/0,f/3,c_1/0,c_2/0,c_3/0,c_4/1,c_5/0,c_6/1,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__b#,a__f#,mark#} and constructors {a,b,f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))